Pembuktian rumus diagonal sisi dan diagonal ruang dengan pendekatan teorema pythagoras bisa menggunakan penjelasan secara teori, namun kali ini kami akan membuktikannya dengan menggunakan suatu alat peraga yang sudah kami buat. Dengan alat peraga ini harapannya pembuktian rumus tersebut dapat mudah di pahami dan dimengerti.
Alat peraga yang kami buat ini meliputi sebuah kubus sebagai penyedia sisi yang akan dibuktikan diagonal sisinya dan juga penyedia ruang yang akan di buktikan diagonal ruangnya, kemudian ada juga alat peraga teorema pythagoras sebagai pembanding ataupun pendekatan supaya bisa membuktikan kebenaran dari rumus diagonal sisi dan diagonal tadi. Setelah itu, kami bentuk suatu sisi yang berukuran sama dengan sisi-sisi pada kubus, dan kemudian kami belah dari bagian diagonal sisinya untuk membuktikan rumus diagonal tersebut. Dan yang terakhir kami juga sudah membentuk satu sisi atau bidang yang terbentuk di tengah-tengah ruang pada kubus yang tebentuk oleh dua rusuk yang saling berhadapan namun tidak sebidang yang kita kenal dengan bidang diagonal, bidang diagonal ini juga kami belah dari bagian diagonal sisinya, dan ini akan kita gunakan untuk membuktikan rumus diagonalnya.
Langsung saja kita buktikan rumus diagonal sisi dan diagonal ruang dengan pendekatan teorema pythagoras.
1. Langkah pertma kita siapkan terlebih dahulu alat peraga yang sudah kita buat.
2. Selanjutnya kita jelaskan kembali tentang teorema pythagoras, yang mana dikatakan bahwa panjang sisi miring sama dengan akar kuadrat dari jumlah dua sisi-sisi lainnya yang sudah dikuadratkan.
3. Ambil salah satu sisi kubus sebagai media yang akan digunakan untuk membuktikan rumus diagonal sisi.
4. Anggap saja panjang sisinya adalah "s". Dari sisi tersebut yang kita gunakan hanya bagian yang sudah terbelah saja.
5. Langkah berikutnya, yaitu kita masukkan bagian itu tadi kedalam alat peraga pythagoras yang sudah
kita sediakan.
6. Selanjutnya, kita jelaskan bahwasannya potongan sisi yang kita belah dari sisi diagonalnya itu akan
membentuk segitiga siku-siku, yang mana diagonal sisinya adalah sisi miring dari segitiga siku-siku
tersebut. Maka, rumus diagonal sisinya adalah:
- (Ds)2 diagonal sisi kuadrat = s2 + s2
- (Ds)2 diagonal sisi kuadrat = 2s2
- (Ds) diagonal sisi = √2s2
- (Ds) diagonal sisi = s√2
· 7. Selanjutnya, untuk membuktikan rumus diagonal ruang, kita ambil salah satu bidang diagonal dari kubus yang sudah disediakan.Bidang diagonal tersebut membentuk suatu persegi Panjang yang sisi panjangnya adalah Ds dan sisi lebarnya adalah s.
8. Masukkan belahan potongan bidang diagonal yang berbentuk segitiga siku-siku tersebut ke dalam papan Pythagoras yang sudah disediakan.
9. Dari sini kita dapatkan bahwa:
- (Drk)2 diagonal ruang kubus kuadrat = Ds2+s2
- (Drk) diagonal ruang kubus = √Ds2+s2
- (Drk) diagonal ruang kubus = √2s2+s2
- (Drk) diagonal ruang kubus = √3s2
- (Drk) diagonal ruang kubus = s√3
Karena sudah terbukti kebenaran dari diagonal sisi dan diagoal ruang tersebut, maka terungkaplah asal-usul rumus diagonal sisi dan diagonal ruang yang sudah kita ketahui sebelumnya. Kira-kira itulah pembuktian rumus diagonal sisi dan diagonal ruang dengan pendekatan teorema pythagoras, nah agar lebih memahaminya bisa kalian lihat secara teori yang ada di dalam video berikut ini: